Environmental Aspects of Aviation Charges

GAP Research Workshop, Berlin, January 23, 2009
Hansjochen Ehmer, Alexandra Stöpfer, Johannes Rott
International University of Applied Sciences
Bad Honnef – Bonn and DLR, Köln
Overview

1. Introduction

2. Short theoretical background

3. Legal background

4. Orientation of noise charges

5. Future developments
Short theoretical background
Marginal Social Cost and Marginal-Cost Pricing

- At q*, marginal social cost exceeds the price paid by consumers. Output is too high. Market price takes into account only part of the full cost of producing the good.
Social / external cost of noise at airports

- Bigger problem at night than at daytime
- Indicator: real estate / housing prices → internalization?
- Prices for windows, ... → internalization is done!
- Price for quality of life?
Internalizing Externalities

- A **tax** per unit equal to MDC is imposed on the firm. The firm will weigh the tax, and thus the damage costs, in its decisions. Instead of the tax any other kind of **surcharge**.
Noise emission measurement – Calculation of potential internalization

- Noise emissions for a given airport is a function of:
 - Number of people exposed to aircraft noise
 - Number of properties affected by the aircraft noise
 - Number of scheduled flights from and to an airport and
 - Type of Aircraft

- Intention: Raising funds for noise protection measures and
- act as an incentive for airlines to use modern and less noisy aircraft.
Noise awareness and medical research

Changes over the years:

Aviation noise decreases – noise awareness increases!
 → inverse reaction

High awareness of aircraft noise in the population
 → not only in the neighborhood of airports

Noise awareness and prices for houses / real estates

In noise related medical research often a problem of the sample

No help of medical research if it’s better to have
 - less movements with bigger / noisier aircrafts
 - more movements with smaller / less noisy aircrafts
Legal background: Noise emission measurement

- ICAO Annex Chapter 16 regulates noise standards for aircraft:
 - Chapter 1 and 2 define AC to be banned from active service
 - Chapter 3 covers AC licensed between 1978 and 2006
 - Chapter 4 encompasses AC licensed after 2006

- EU Commission directive 2202/C 103 E/16 from 2002 defines noise charge as a levy by the airport:
 - 1. **Fixed charges**: *compensation* for noise emitted by an AC
 - 2. **Variable charges**: amount should provide an *incentive* to switch to less noisy AC, the more noise an aircraft emits, the higher the charge

Cost orientation of charges
Proposal of noise charges by the EU COM

- The European Commission promotes a formula for calculating airplanes noise charges:
 - Fixed term being used by the airports to provide compensation
 - Variable term designed to urge airlines to switch to less noisy AC

Promoted Calculation of noise charge by EC:

\[C = Ca \cdot 10^{[(La - Ta)/10]} + Cd \cdot 10^{[(Ld - Td)/10]} \]

- \(Ca/Cd \) = unit noise charge for arrival / departure
- \(La \) = certified noise level at approach
- \(Ld \) = certified noise level at flyover and lateral
- \(Ta \) = threshold at arrivals corresponding to the category of a relatively quiet aircraft for this airport
- \(Td \) = idem for departure
- \(Ca \) and / or \(Cd \) can be 0

- The total noise charge is calculated for arrival as well as for departure.
Orientation of noise charges
Political Concepts for Traffic-Noise-Reduction
Noise-abatement-measures and Effected Spheres

- Noise-related measures
 - noise surcharges
 - noise budget restrictions
 - aircraft related noise-level-limitations

- Operational measures
 - curfews
 - operating quotas
 - frequency capping
 - aircraft size steering
 - airport cooperation for noise reduction
 - administrative traffic-steering
 - modal-split-steering

- Preliminary procedures and measures for decision, implementation and enforcement of noise-reduction measures
 - Mediation
 - Incentives for providers
 - Individual prosecution of noise-violations

- Measures directed to increase the noise-acceptance and to reduce the exposure to noise
 - Incentives for noise-exposed population
 - real-estate- and land-use-policy

Affected Spheres:
Ecology Traffic Economy
Impact of Noise Charges - Airport View

- Revenues
- Competitive position
- Airport model
 - Hub
 - Freight percentage
 - LCC
- Establishment of a noise measuring system
Impact of Noise Charges - Airline View

- Switching cost
 - between different aircraft types
 - between airports
- Reallocation of cost
- Possible reactions
- Airline model
- Airline flexibility
 - Rate of fleet change
 - New fees are faster than new aircraft
Choice of airports

• Only 7 German airports have noise oriented classes
• The others: certification oriented according ICAO, than MTOW
• Since 2006 ICAO chapter 4
 – The big majority already now
 – All new certified a/c have to fulfill it
 – Nearly no incentive for airlines to switch
• German Bonusliste
 – Introduced before chapter 4 ICAO
 – Introduced to differentiate ch. 3
 – Taken i.a. for night curfews
Differenz, Lärmgrenzwerte zu zertifizierten Lärmpegeln

Voraussetzung:
- mind. 2 dB an der Summe zweier Meßpunkte,
- keine negativen margins an einem Meßpunkt

(Kumulativ: Start, Seitenlinie, Landung), [EPNdB]
Example: fees and charges

B 747-400; bonuslist aircraft; MTOW 395 t; max. 390 seats; with 280 passengers on board; intercont. traffic; airport FRA

until the end of 2000 no night-supplement in FRA!
No noise fee implementation on German Airports for the 7 airports

<table>
<thead>
<tr>
<th>ICAO Chapters</th>
<th>Airport Noise Categories</th>
<th>Separate Noise Fee</th>
<th>Daytime Distinction</th>
<th>Other Noise Fee</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>HAM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>HAJ</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>separate noise fee only at night (2008)</td>
<td></td>
</tr>
<tr>
<td>SXF</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2007 Daytime distinction only from cat 5 up</td>
<td></td>
</tr>
<tr>
<td>TXL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>DUS</td>
<td>X</td>
<td>(X)</td>
<td>X</td>
<td>2008 Daytime distinction only for non chapter 3 aircraft</td>
<td></td>
</tr>
<tr>
<td>MUC</td>
<td>X</td>
<td></td>
<td>X</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>CGN</td>
<td>X</td>
<td></td>
<td>X</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>STR</td>
<td>X</td>
<td></td>
<td></td>
<td>2007</td>
<td></td>
</tr>
</tbody>
</table>
The Role of Noise Fees in Relation to Total Landing Fees

Proportion of noise fee in relation to total landing fee (day) in %

- B737-700
- A320
- B777-200LR
- A340-500

Proportion of noise fee in relation to total landing fee (night) in %

- B737-700
- A320
- B777-200LR
- A340-500
Noise Fees at German Airports - Comparison

Cost and savings in relation to aircraft type

Deviation of noise charges in comparison to B747-400 (day)

Deviation of noise charges in comparison to B747-400 (night)
Noise Fees at German Airports - Comparison

Cost and savings in relation to aircraft type

Deviation of noise charges in comparison to B737-800 (day)

- FRA
- MUC
- TKL
- HAM

Deviation of noise charges in comparison to B737-800 (night)

- FRA
- MUC
- TKL
- HAM

- 320-200
- 757-300
Noise charges in Europe, short comparison

- Noise charges for the A380 and the B747 vary quite considerably between airports due to different formulas for calculation and different variables being used.

- MAD, OSL and LIS no noise charge system in force.

- Two different types of calculation are used as basis of calculation:
 - MTOW ICAO Annex 16: CDG, LHR and CIA
 - Combination of different aircraft noise levels (APNL, TONL, SLNL): ARN, FRA, AMS and HEL
Noise emission measurement – Calculation

- ICAO Annex 16 Chapter 4 provides a list of noise emissions of different aircraft in relation to their Maximum take-off weight (MTOW).

Example Airbus 380-800 and Boeing 747-400:

<table>
<thead>
<tr>
<th>Type of Aircraft</th>
<th>MTOW in t</th>
<th>Number of Engines</th>
<th>Noise level according to ICAO-Annex 16 in EPNdB (Effective Perceived Noise Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Take-off</td>
</tr>
<tr>
<td>A380-800</td>
<td>560</td>
<td>4</td>
<td>93.7</td>
</tr>
<tr>
<td>B747-400</td>
<td>386</td>
<td>4</td>
<td>99.0</td>
</tr>
</tbody>
</table>
Noise charges in depth – Final Results

- MTOW ICAO Annex 16:

<table>
<thead>
<tr>
<th>Airport</th>
<th>A380 in €</th>
<th>B747 in €</th>
<th>Basis of Calculation</th>
<th>Appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDG (daytime)</td>
<td>69.90</td>
<td>68.30</td>
<td>MTOW ICAO</td>
<td>+</td>
</tr>
<tr>
<td>CIA</td>
<td>47.95</td>
<td>32.43</td>
<td>MTOW</td>
<td>-</td>
</tr>
<tr>
<td>LHR</td>
<td>688.43</td>
<td>688.43</td>
<td>MTOW ICAO (mod.)</td>
<td>-</td>
</tr>
</tbody>
</table>
Noise charges in depth – Final Results

- Combination of different aircraft noise levels during take-off and landing leads to a more sophisticated noise charging scheme:

<table>
<thead>
<tr>
<th>Airport</th>
<th>A380 in €</th>
<th>B747 in €</th>
<th>Basis of Calculation</th>
<th>Appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARN</td>
<td>38.51</td>
<td>64.75</td>
<td>APNL, TONL, SLNL</td>
<td>+</td>
</tr>
<tr>
<td>FRA (daytime)</td>
<td>75.00</td>
<td>270.00</td>
<td>APNL, TONL, SLNL</td>
<td>+</td>
</tr>
<tr>
<td>HEL</td>
<td>49.92</td>
<td>167.87</td>
<td>TONL, SLNL</td>
<td>+</td>
</tr>
<tr>
<td>AMS (daytime)</td>
<td>198.42</td>
<td>559.11</td>
<td>APNL, TONL, SLNL and MTOW</td>
<td>++</td>
</tr>
</tbody>
</table>
Future developments on noise charges I

- Further research needed
 - If an equilibrium of the stakeholders is possible
 - If there can be a solution
 - If it’s better to have less but louder flights
 - Or if it’s better to have more movements
 - But this relevant only with enough capacity
- Orientation towards certified noise level (as with the EU COM) is not effective
 - Big difference for one aircraft according weight
Future developments on noise charges II

• In FRA (and others) an average over the year
 – Is it fair for different kinds of airlines / flights?

• Optimization:
 – Is it optimal to calculate dB(A) per flight?
 • Influence of weather, DFS, technical reasons
 – Proposal:
 • (Further) differentiation landing / starting fee
 • yearly average per airline
 • Per flight calculation including the actual weight

• Effectiveness control is needed!
 – Any differences between the airports in noise development?
 – Controlling of strategies should be “normal”
 – Noise forecasts are required for new investment – are they in any way strategy related?
 • Reasons for changes for changes of strategies though no results
 • Reasons for result without a change of strategy
Future developments beyond noise charges

- Since about November 2006 emissions became more important than noise – at least in general
- In the surrounding of an airport noise remains more important
- Air quality at the airport is still better than in city areas
- Air pollution is more a problem of high altitudes
- However first airports started to introduce an emission oriented surcharge on the landing fee
- Orientation of the fee on NOx, not on CO₂
- The introduction is intended to be cost neutral
- Forerunners FRA and MUC, CGN following
Thank you for your attention!

Time for questions and discussion.